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1. Introduction

One of the main aims of string theory, as a theory of quantum gravity, is to elucidate

the nature and fate of space-time singularities. String propagation in static space-times,

such as time-independent orbifold singularity backgrounds, is reasonably well understood.

However, comparatively little is known about string theory in non-trivial time-dependent

(and possibly singular) space-time backgrounds, the time-dependence giving rise to rather

basic problems in the very formulation of string theory in such backgrounds, and the

singularities making questionable the validity or reliability of a perturbative approach to

the problem. It is thus natural to appeal to more modern non-perturbative formulations

of string theory to gain some insight into these issues. An excellent summary of recent

research along these lines, e.g. via the AdS/CFT correspondence or tachyon condensation,

can be found in [1].

One can also try to use non-perturbative matrix theory formulations of M-theory [2, 3]

or string theory [4, 5] to address the fate of singularities. What had hampered progress
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along these lines is the fact that these theories are quite complicated in general (even

weakly) curved backgrounds [6, 7]. However, it has recently been pointed out by Craps,

Sethi and Verlinde (CSV) [8] that one can find an explicit matrix string description of a

particular time-dependent IIA background, given in the string frame by a flat metric with

a linear null dilaton. This leads to a metric with a null singularity either in the Einstein

frame or upon lifting this configuration to M-theory. The central observation of [8] is that

the dual matrix string gauge theory description of string theory in this background is well-

defined and weakly coupled close to the singularity. In this regime the non-Abelian nature

of the matrix-string coordinates cannot be neglected and one thus tentatively arrives at

a picture where space-time geometry becomes non-commutative near a singularity, while

the emergence of a classical space-time at large distances from the singularity has been

confirmed by a 1-loop calculation [9, 10]. Subsequently, the CSV model has been extended

and generalised in various ways, e.g. to null brane backgrounds [11 – 13] and certain plane

wave metrics [14 – 17].

Here we will carefully revisit the extension of the CSV model to singular plane wave

backgrounds, not only because such geometries exhibit a perfect combination of simplicity

in construction together with interesting non-trivial features such as time-dependence and

a singularity, but also because the extension of the Seiberg-Sen DLCQ procedure [18 – 20]

to curved backgrounds requires some care, and we feel that previous treatments of this

issue have not always been wholly satisfactory.

Moreover, as we will now argue, in the context of the matrix string theory description

of space-time singularities there is a privileged class of IIA plane wave backgrounds, the

homogeneous or scale-invariant singular plane waves [21, 22] with a null dilaton. Thanks

to the special properties of these metrics they provide us with a natural and interesting

generalisation of the CSV background that also permits an almost literal implementation

of the generally accepted flat space Seiberg-Sen procedure in these curved backgrounds.

We begin with the simple observation that the CSV IIA background (B.2), namely

Minkowski space with a linear dilaton, lifts to the 11-dimensional metric

ds2
11 = −2dudv + uδijdyidyj + u−2(dy)2 . (1.1)

This exhibits the CSV background, first of all, as a special case of an 11-dimensional

plane wave, whose general form in Rosen coordinates is ds2
11 = −2dudv + Gµν(u)dyµdyν .

Secondly, and more specifically, the CSV background falls into the special class of plane

wave metrics with the power-law behaviour

ds2
11 = −2dudv +

∑

i

u2ni(dyi)2 + u2b(dy)2 . (1.2)

It is precisely this class of metrics that was argued to provide an ideal class of models

of realistic space-time singularities, because these singular scale-invariant homogeneous

plane waves [22] were shown in [23 – 25] to arise generically as the Penrose limits of space-

time singularities of power-law type [26].1 Thus these metrics are not just toy-models but

1This is a rather mild condition which essentially says that the singularity should not be non-analytic

in some suitably chosen coordinates.
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true approximations (in the sense of the Penrose-Fermi expansion [27, 28]) of space-time

singularities and, as such, provide a physically well-motivated generalisation of the CSV

background.

We thus need to understand how to extend the DLCQ construction [18, 19] of matrix

string theory, briefly reviewed in section 2.1 following [20], to these curved backgrounds.

To that end, we first carefully rephrase the procedure adopted by CSV in the Seiberg-Sen

framework (section 2.2). Having clarified what are precisely the steps involved, in particular

a null rotation (aligning the almost null with a spacelike circle), a boost of the energies,

and a subsequent overall rescaling of the length scales of the theory, we then show that,

remarkably, the singular homogeneous plane waves are precisely such that these operations

can be implemented via isometries and homotheties of the metric (section 2.3). We also

resolve some ambiguities regarding the order in which these isometries, scalings and the

duality transformations implementing the 9/11 flip [5] of matrix string theory are to be

performed. This then allows us, as in [8], to deduce the matrix string theory action from

the expansion of the D-string DBI action (section 2.4) and for its bosonic part we obtain,

schematically (for the precise expression see (3.2)),

S∼
∫

d2σTr
(
e2φ(τ)FαβFαβ+gij(τ)DαXiDαXj +e−2φ(τ)gik(τ)gjl(τ)[Xi,Xj ][Xk,X l]

)
,

(1.3)

where the gij are the components of the IIA Rosen coordinate plane wave metric, and φ is

the null dilaton. These actions, which are the natural plane wave counterparts of ordinary

Yang-Mills theory, have appeared before in this context, e.g. in [14, 15, 17], but both in our

derivation of this DLCQ matrix string action and in the analysis of the decoupling condi-

tions (justifying the truncation to this world-sheet Yang-Mills-like theory) our treatment

differs significantly from that of previous publications.

Having obtained this action, we then analyse some of its properties. We comment on

the fermionic terms in the action in section 3.1. In section 3.2 we show that the space-

time coordinate transformation from Rosen to Brinkmann coordinates results in a rather

non-obvious equivalence between two apparently very different matrix string Yang-Mills

theories (namely the above action, with time-dependent couplings for the scalar fields on

the one hand, and the Brinkmann action (3.9) with time-independent couplings but time-

dependent mass terms instead). This illustrates that the above action correctly captures

the target space-time geometry. The brief discussion of this equivalence presented here will

be supplemented by a more detailed discussion in [29], where we also extend it to 3-algebra

actions such as those that appear in the BLG multiple M2-brane actions [30 – 32],

In section 3.3 we investigate the possibility to absorb the time-dependent couplings

into the world-sheet metric, as in [8], finding one special case where one ends up with a

(1+1) de Sitter world-sheet, and in section 3.4 we highlight the usefulness of the (more

space-time covariant) Brinkmann representation of the action by showing how the space-

time nature of the singularity (whether it is strongly or weakly coupled) is reflected in the

mass terms of the world-sheet theory (strong coupling requiring at least one ‘tachyonic’

scalar).
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We briefly summarise some useful facts about the geometry of plane waves in appendix

A, and in appendix B we classify and analyse the plane wave - null dilaton backgrounds

that arise upon reduction from the 11d plane wave power-law metrics (1.2).

One subject we do not address here is that of classical solutions in these models, such

as fuzzy spheres, and the possible role that they may play in understanding the evolution

away from/towards the null singularity. These have been studied before in this context,

e.g. in [16, 15], and some interesting new work in this direction will appear in [33].

2. DLCQ and singular homogeneous plane wave backgrounds

2.1 Quick recap of the Seiberg-Sen argument

In the Seiberg-Sen argument [18, 19] (as well as in its CSV variant [8, 10] we will discuss

below) a central role is played by the transformation which relates the compactification on

a (vanishingly) small spacelike circle with radius Rs → 0 to the DLCQ compactification

on a null circle with fixed radius R. Concretely, one considers the metric

ds2 = −2dy+dy− + . . . = −(dy0)2 + (dy9)2 + . . . (2.1)

where y± = (y0 ± y9)/
√

2. In order to realise the lightlike identification y− ∼ y− ± 2πR as

a limit of standard spacelike compactifications, one considers the boost

x± ≡ y′± = e±βy± (2.2)

and requires that in the boosted/primed coordinates the identification is

x9 ∼ x9 + 2πRs x0 ∼ x0 . (2.3)

A convenient choice is eβ =
√

2 R
Rs

, corresponding to the simple identification

y+ ∼ y+ + πR2
s/R y− ∼ y− − 2πR (2.4)

of the unboosted lightcone coordinates y± (with this choice of β the periodicity of y− is

fixed, i.e. independent of Rs). Since the lightcone coordinates transform under a boost as

in (2.2), the momenta transform as p′± = e∓βp±. In particular, a state with N units of

momentum in the compact x9-direction, p′9 = N/Rs, leads in the limit Rs → 0 to a state

with N units of lightcone momentum

p+ ≡ −p− =
N

R
, (2.5)

since
N

Rs
= p′9 =

1√
2
(p′+ − p′−) =

1√
2
(e−βp+ − eβp−)

Rs→0−→ − R

Rs
p− (2.6)

Now, following [20], one defines the DLCQ Hamiltonian HDLCQ
N (m,R) (in a sector with N

units of lightcone momentum and characterised by, say, a mass scale m) as the limit

HDLCQ
N (m,R) := lim

Rs→0
i∂y+ , (2.7)
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with m and R fixed, since in this limit the spacelike identification (2.3) becomes the lightlike

identification y− ∼ y− + 2πR. In terms of the boosted coordinates xµ = y′µ one has

Elc ≡ i∂y+ =
1√
2
eβ(i∂x0 + i∂x9) =

R

Rs
(E′ − p′9) . (2.8)

The term in brackets on the rhs is the total energy of the system minus the background

energy p′9 = N/Rs, Sen’s [19, 20] KK Hamiltonian HN (m,Rs) := E′ − p′9. In the present

context, it is also useful to think of this linear combination in the limit p′9 = N/Rs → ∞
as the non-relativistic infinite momentum frame Hamiltonian

E′ =
√

(p′9)
2 + ~p ′2 + m2 ⇒ E′ − p′9 =

~p ′2 + m2

2p′9
+ O((p′9)

−3) . (2.9)

Thus one has

HDLCQ
N (m,R) = lim

Rs→0

R

Rs
HN(m,Rs) . (2.10)

In order to identify the rhs, and eliminate the singular prefactor, one now makes the

observation that, on purely dimensional grounds, if one rescales all mass scales by a factor

λ, and all length scales by a factor λ−1, then the Hamiltonian will also scale as λ. Thus,

with λ = R/Rs one has

R

Rs
HN (m,Rs) = HN

(
R

Rs
m,

R2
s

R

)
≡ HN (m̂, R̂s) , (2.11)

and one has now concretely realised the DLCQ Hamiltonian as the limit

HDLCQ
N (m,R) = lim

R̂s→0
HN(m̂, R̂s) (2.12)

of standard KK Hamiltonians of a family of new theories with mass scale m̂ = (R/Rs)m

and spatial radius R̂s = R2
s/R, with m and R held fixed.2

This much is completely general, and pure kinematics. One can now apply this to M -

theory with m = mp the Planck mass and Rs = R11. In terms of the scaled IIA parameters

ĝs and ℓ̂s (string coupling and string length), this is then precisely the DKPS [34] D0-brane

weakly coupled (ĝs → 0) field theory (ℓ̂s → 0) limit, in which the Hamiltonian reduces to

YM quantum mechanics with the finite YM coupling g2
YM = ĝsℓ̂

−3
s , leading to the BFSS

matrix theory [2].

One can equally well apply this prescription to IIA string theory [4, 5, 35]. Thus,

starting off with a IIA theory with string scale ms and null circle with radius R, this

is described by the limit of a ÎIA-theory with string scale m̂s = (R/Rs)ms and radius

R̂s = R2
s/R, and with the same (dimensionless) coupling constant ĝs = gs. To identify

this theory, one can lift it to 11-dimensions. Then one sees that this theory is described

by the above YM matrix theory with an additional transverse circle, bettter described by

(1+1)-dimensional YM theory on the dual cylinder with constant YM coupling constant

g2
YM ∼ (R/gsℓ

2
s)

2 and constant radius RD1 = ℓ2
s/R on which the T-dual D1-branes are

wrapped. This is the matrix string DLCQ description of IIA string theory.

2Note that, while in terms of Rs one has Rsm̂ = Rm (this really is just a change of scale, the dimensionless

quantity Rm being kept fixed), in terms of R̂s one has the Seiberg relation R̂sm̂
2 = Rm

2 [18].
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2.2 Adapting the Seiberg-Sen argument to the CSV setting

In [8, 10], a variant of the Seiberg-Sen argument was introduced, in which the lightlike

compactification is related to a limit of spacelike compactifications along a direction trans-

verse to the lightcone. The motivation for this was the fact that in the CSV model one

has a null linear dilaton, which is not compatible with the periodic identification of y+

in (2.4). In this section, in order to prepare the ground for the generalisation to curved

backgrounds, we will explain the precise relationship between the procedure adopted by

CSV and the Seiberg-Sen argument of the previous section.

The point of departure this time is a metric of the form

ds2 = −2dy+dy− + (dy1)2 + . . . , (2.13)

where we seek a Lorentz tranformation such that an almost null identification in this

background is mapped to the manifestly spatial identification x̃1 ∼ x̃1 + 2πRs. If one does

(for the time being) not touch y+, this leaves null rotations which have the general form

y− = x̃− + αx̃1 + (α2/2)x̃+ y1 = x̃1 + αx̃+ . (2.14)

The identification then becomes

y1 ∼ y1 + 2πRs y− ∼ y− + 2παRs (2.15)

Thus the obvious choice for α (leading, as in section 2.1, to an Rs-independent periodicity

of y−), is α = ±R/Rs. Once again, a state with N units of momentum in the compact

direction, p̃1 = ∓N/Rs, is mapped in the limit Rs → 0 to a state with N units of lightcone

momentum p+ = N/R, since

p̃1 = p1 + αp− = p1 ±
R

Rs
p−

Rs→0−→ ± R

Rs
p− . (2.16)

Therefore, we can again define the DLCQ Hamiltonian as the limit

HDLCQ
N (m,R) := lim

Rs→0
i∂y+ , (2.17)

this time with the almost null identification (2.15), and the aim is now to rewrite this as

a well-defined limit of standard Hamiltonians. Here it is important to note that, while

in the Seiberg-Sen procedure the boosting of the energies, as in (2.8), was an automatic

consequence of aligning an almost lightlike with a manifestly spacelike direction, here this

is not the case. Rather, under the null rotation, which achieves this alignment all by itself,

the lightcone energy transforms as

Ẽlc = Elc − αp1 − (α2/2)p− (2.18)

and is thus not becoming small. Thus one can anticipate that this boost must still be

performed seperately in order to arrive at the vanishing energies that permit a decoupling

limit argument. Moreover, the Seiberg-Sen boost had the added bonus that it automatically

– 6 –
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led to the appropriate background subtracted KK Hamiltonian HN = E′ − p′9. Using the

CSV prescription, this is not automatically the case, the background momentum arising

from the x1-direction, which is not part of the lightcone directions. However, we will see

that with a judicious choice of null rotation and boost parameters we will once again be

able to relate the DLCQ Hamiltonian to the relevant KK Hamiltonian, namely E′ − p′1.

To make this more explicit, we go to the adapted null-rotated coordinate system

x̃µ (2.14), and also perform a further boost isometry, with parameter γ > 0, to the coordi-

nates y′µ = xµ, with

x± = γ±1x̃± . (2.19)

Then one has the relation

i∂y+ = γi∂x+ −αi∂x1 + γ−1α2/2 i∂x− ⇔ Elc = γ(E′
lc +(α/γ)p′1 − (α2/2γ2)p′−) (2.20)

To unravel this, let us write the lightcone energies and momenta in terms of the ordinary

energy E′ = i∂x0 and p′9 = −i∂x9,

Elc =
γ√
2

(
(1 + α2/2γ2)E′ − (1 − α2/2γ2)p′9 + (

√
2α/γ)p′1

)
. (2.21)

We see that we can eliminate the annoying p′9 from this expression by choosing α and

γ such that α2/2γ2 = 1. This also has the consequence that p′1 appears with the same

coefficient as E′. Specifically, choosing

α = − R

Rs
γ =

R√
2Rs

, (2.22)

one finds the simple result

Elc =
γ√
2
(2E′ − 2p′1) =

R

Rs
(E′ − p′1) (2.23)

which is the precise analogue of the expression (2.8) that appears in the argument based

on the Seiberg boost. The expression in brackets is Sen’s KK Hamiltonian, and thus one

can now repeat verbatim the arguments of the previous section to deduce that

HDLCQ
N (m,R) = lim

Rs→0

R

Rs
HN(m,Rs) = lim

R̂s→0
HN (m̂, R̂s) . (2.24)

The change of scale involved in the last equality means that the relation (2.23) between the

lightcone energy and the boosted energy becomes the statement that the original lightcone

energy is now equal to the background subtracted energy in the final (YM-like in the string

context) rescaled theory,

Elc = Ê − p̂1 . (2.25)

It is convenient, not only for book-keeping purposes, to concretely implement this change

of scale by the scaling

x̂µ =
Rs

R
xµ dŝ2 =

(
Rs

R

)2

ds2 . (2.26)

– 7 –
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of the coordinates and the metric. In particular, the new energies and momenta are now

related to the old ones by Ê = (R/Rs)E
′ etc., leading to (2.25). Moreover, the concomitant

rescaling of the metric has precisely the effect that other length scales in the problem, like

transverse radii, are also automatically rescaled appropriately, i.e. a circle of proper radius

ρ with respect to the metric ds2 has proper radius ρ̂ = (Rs/R)ρ with respect to the metric

dŝ2.

We should note here that, while the above choice of parameters (2.22) leads to a

nice cancellation among various terms, and thus to the simple final result (2.25), there is

considerable leeway in the choice of parameters if one is only interested in some gauge-fixed

energy fluctuations. In particular if, in the string context and as in [8], one gauge fixes

x+ and x1, this amounts to setting the fluctuations δp̂− and δp̂1 to zero. This implies, in

particular, that δÊlc ∼ δÊ, so that at the level of the gauge-fixed fluctuations (2.21) leads

to

δElc ∼ δÊ ∀ γ ∼ α = ± R

Rs
(2.27)

(with a finite proportionality factor), which thus also gives a direct relationship between

the lightcone and YM (fluctuation) energies. In particular, the choice adopted by CSV is

α = γ =
R

Rs
, (2.28)

leading to the (apparently less attractive) result

Elc = (Êlc + p̂1 −
1

2
p̂−) , (2.29)

which, however, reduces to (2.27) at the level of fluctuations. This is good enough. Be-

low, when discussing the generalisation of this procedure to curved backgrounds, we will

similarly make use of this freedom (and adopt the CSV choice (2.28)) to define an appro-

priate fluctuation Hamiltonian since, in general, in any case there will be no choice of con-

stant parameters α, γ that gives on the nose the appropriate curved space analogue (2.45)

of (2.9), (2.25).

2.3 Extending the Seiberg-Sen-CSV DLCQ to plane wave backgrounds: the

privileged role of singular homogeneous plane waves

We will now discuss the generalisation of the CSV derivation of matrix string theory to

curved (in particular plane wave) backgrounds. To that end, let us first take stock of the

steps involved in the CSV procedure. As we saw above, in the case of a flat background

(possibly supplemented by a null dilaton [8]), the derivation can be concretely implemented

by the following three steps:

1. As a first step, one performs the purely kinematical operation of passing to adapted

coordinates by a coordinate transformation that aligns the almost null with a small

space-like circle. In the case of the flat metric this is accomplished by a null rotation

Lorentz isometry.

– 8 –
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2. Next one performs a dynamical transformation (acting non-trivially on the lightcone

time coordinate y+) which has the effect of rescaling the energies. In the case of the

flat metric this is accomplished by a boost Lorentz isometry.

3. Finally, this boost is accompanied by a rescaling of the coordinates (and the metric),

implementing the Seiberg-Sen change of mass/length scales. In the case of the flat

metric this is accomplished by a uniform scaling of the Minkowski coordinates, which

is a homothety (constant conformal rescaling) of the metric.

We will now show that this prescription can be implemented almost literally for a

special class of plane wave metrics (in the above, replace “flat” by “singular homogeneous

plane wave”, “Minkowski” by “Brinkmann”, and eliminate the word “Lorentz”).

To set the stage, we first consider a general plane wave metric, which in Rosen coor-

dinates takes the form

ds2 = −2dy+dy− + gij(y
+)dyidyj . (2.30)

Note that this metric has manifest translational isometries in the lightcone y−- and trans-

verse yi-directions, and we thus begin with the almost null identification

(y+, y−, y1, ym) ∼ (y+, y− + 2πR, y1 + 2πǫR, ym) . (2.31)

where we have set Rs = ǫR. As before, we would like to perform a coordinate transforma-

tion (and ideally an isometry) yµ → x̃µ, in terms of which the above identification simply

reads

x̃1 ∼ x̃1 + 2πǫR . (2.32)

Now in addition to the manifest transverse translational isometries, any plane wave met-

ric (2.30) has dual hidden translational symmetries generated by the transverse Killing

vectors P (i) (A.4). In particular, P (1) generates the transformation (null rotation)

(y+, y−, y1, ym) = (x̃+, x̃− + αx̃1 + α2h11(x̃+)/2, x̃1 + αh11(x̃+), x̃m + αh1m(x̃+)) , (2.33)

(where hik(y+) =
∫ y+

du gik(u)), which indeed accomplishes (2.32) for the choice α = ǫ−1.

Thus step 1 can be implemented via isometries for any plane wave metric. Step 2

requires an isometry involving transformations of y+. Generic plane waves do not possess

any such isometries. However, there are precisely two classes of plane waves with such an

extra isometry [22]. In one, this isometry involves a shift in y+, in the other the isometry

is realised not by a shift but by a scaling of y+ (accompanied by some transformation of

the other coordinates). In the present context, it is evidently this latter class of singular

homogeneous plane waves (SHPWs) that we are interested in. The prototypical example

of such SHPWs are plane wave metrics with a power-law behaviour in Rosen coordinates,

ds2 = −2dy+dy− +
∑

i

(y+)2mi(dyi)2 . (2.34)

This isometry is more manifest in Brinkmann coordinates, in which the above metric takes

the form

ds2 = −2dz+dz− +
∑

a

ma(ma − 1)(za)2
(dz+)2

(z+)2
+

∑

a

(dza)2 . (2.35)

– 9 –
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This metric clearly possesses the isometry is (z+, z−) → (λz+, λ−1z−) and, translated back

to Rosen coordinates, this isometry is given by (y+, y−, yi) → (λy+, λ−1y−, λ−miyi). In

particular, the Lorentz boost isometry (2.19) can be generalised to the isometry

(x̃+, x̃−, x̃i) = (γ−1x+, γx−, γmixi) , (2.36)

and we will eventually choose γ = α = ǫ−1, in accordance with (2.28).

Now let us consider Step 3, the scaling. First of all we note that any plane wave

ds2 = −2dz+dz− + Aab(z
+)zazb(dz+)2 + (dza)2 = −2dx+dx− + gij(x

+)dxidxj (2.37)

has the homothety (conformal isometry with a constant factor)

(z+, z−, za) → (z+, λ2z−, λza) ⇔ (x+, x−, xi) → (x+, λ2x−, λxi) (2.38)

under which ds2 → λ2ds2. Even though this scales the metric, it does not uniformly rescale

the energies / length scales of the theory as e.g. x+ does not scale. However, precisely when

Aab(z
+) ∼ (z+)−2, as in (2.35), there is another homothety, namely the uniform rescaling

of the coordinates

(z+, z−, za) → λ(z+, z−, za) . (2.39)

(this is a combination of the first homothety with the boost). Since Brinkmann coordinates

are Fermi coordinates [27] and thus a direct measure of geodesic distances, this is indeed

a physical scale transformation. Thus in this case, one can complete the Seiberg-CSV

procedure in a natural way by a rescaling of the coordinates and the metric exactly as

in (2.26),

ẑµ = ǫzµ dŝ2 = ǫ2ds2 . (2.40)

In Rosen coordinates, this transformation of the coordinates reads

(x̂+, x̂−, x̂i) = (ǫx+, ǫx−, ǫ1−mixi) . (2.41)

Thus, to summarise, there appears to be a straightforward and very natural extension of

the Seiberg-CSV procedure to scale-invariant plane waves, in which the flat space Lorentz

transformations (null rotation, boost) are implemented by isometries of the metric, and

the Seiberg scaling is realised by a uniform scaling of the Brinkmann coordinates

We are thus now in the position to define, for a power-law plane wave metric of the

form

ds2 = −2dy+dy− + g11(y
+)(dy1)2 + . . . = −2dy+dy− + (y+)2m1(dy1)2 + . . . (2.42)

the DLCQ Hamiltonian, as before, via

HDLCQ
N (m,R) := lim

Rs→0
i∂y+ . (2.43)

Performing the null rotation isometry (2.33) with parameter α, the boost isometry (2.36)

with parameter γ, and the homothety (2.41) with parameter ǫ (momentarily treating these
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parameters as independent), one finds, as the generalisation of (2.20) (and with the final

scaling already performed)

∂y+ = ǫγ
[
∂x̂+ − (α/γ)(ǫγ)m1g11(x̂+) ∂x̂1 + (α2/2γ2)(ǫγ)2m1g11(x̂+) ∂x̂−

]
(2.44)

We see that this has a finite limit as ǫ → 0 (Rs → 0), provided that γ ∼ α ∼ ǫ−1. We also

see that, for non-contant g11 there is no choice of constant parameters α, γ for which the

rhs reduces directly to the background subtracted energy, namely Ê−
√

g11(x̂+)p̂1, arising

from the appropriate generalisation of (2.9),

Ê =

√
g11(x̂+)(p̂1)2 + ~̂p2 + m2 ⇒ Ê −

√
g11(x̂+)p̂1 =

~̂p2 + m2

2
√

g11(x̂+)p̂1

+ . . . (2.45)

However, as discussed at the end of section 2.2, it is still meaningful to use the above

equation at the level of gauge-fixed energy fluctuations for any choice of α, γ, ǫ, subject to

the condition γ ∼ α ∼ ǫ−1, and we will henceforth make the simple choice (2.28)

α = γ = ǫ−1 =
R

Rs
, (2.46)

leading to δElc ∼ δÊ. With this choice of parameters, the combined action of the

boost (2.36) and the rescaling (2.41) is the transformation

(x̃+, x̃−, x̃i) = (x̂+, ǫ−2x̂−, ǫ−1x̂i) , (2.47)

which, as noted before, is actually a homothety (2.38) for any plane wave metric. In

particular, the original lightcone time coordinate y+ is equal to the “Yang-Mills” lightcone

gauge time variable x̂+ = τ . Moreover, combined with the rescaling (2.40) of the metric,

this is precisely the scaling that defines the Penrose plane wave limit [36 – 38]. In the present

case of plane waves, the Penrose limit leaves the metric invariant, and this is precisely as

it should be since the DLCQ procedure should ideally not deform the metric (or other

background fields).

Obviously, once one thinks of this combined transformation, one is naturally led to ex-

plore the relationship between DLCQ and the Penrose limit for more general backgrounds,

e.g. as in [39] or [40, 41]. However, it is not clear to us whether the result should then really

be thought of as the DLCQ of a theory in the original background (this appears to be the

point of view adopted e.g. in [40]) rather than as a DLCQ of a theory in some Penrose

plane wave limit (depending on a choice of null geodesic) of the original background.

As a final remark, we should also point out that in some of the post-CSV litera-

ture dealing with the extension of the CSV model to curved backgrounds (typically plane

waves, even though not always recognised as such, written in almost-Rosen coordinates

like (A.2), (A.3)), the boost and scale transformation of the Seiberg-Sen procedure were

implemented by the naive flat space boost

(y+, y−, yi) → (ǫy+, ǫ−1y−, yi) (2.48)
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and the naive flat space scaling

(y+, y−, yi) → ǫ−1(y+, y−, yi) . (2.49)

Now the former is not an isometry of a plane wave metric (not even when it is of the

power-law, singular homogeneous, type), and the latter is neither a homothety nor a phys-

ical scale transformation of the metric (Rosen coordinates are not a measure of proper

physical distance in space-time). Nevertheless, the combined action of these two transfor-

mations happens to be identical to the combined action (2.47) resulting from the boost

isometry (2.36) and the physical scale transformation (2.41), and thus in the present case

one can get away with this. However, it should be clear from what we have said that

conceptually at least this appears to be an incorrect implementation of DLCQ, or at least

one that requires further justification. Our more systematic treatment of the DLCQ will

also lead to a quite different, and significantly simpler, analysis of decoupling conditions

and related issues.

2.4 9/11 flip, DBI expansion, and decoupling

We have now prepared the ground for the DLCQ of IIA string theory in singular homoge-

neous plane wave - null dilaton backgrounds such as those determined in appendix B, (B.9).

We assume that we have already performed the null rotation yµ → x̃µ aligning the almost

null circle with the spatial direction x̃1, such that x̃1 ∼ x̃1 +2πRs, and we focus on a sector

with N units of momentum p̃1 = N/Rs.

Via the procedure outlined at the end of section 2.1 (boosting and scaling, lifting to

M-theory along x11 with scaled radius R̂11 = ǫℓsgs, ℓs and gs denoting the original IIA

string length and string coupling respectively, then reducing along the scaled circle with

radius R̂1 = R̂s = ǫ2R, and performing a T-duality along x11), one arrives at a definition

of the DLCQ of IIA string theory in terms of a (decoupling) limit of IIB string theory in

a sector with N D1-branes.

Alternatively, one can use the 9/11 flip [4, 5] (more appropriately called a 1/11 flip

in the present context) to arrive at the same theory (in entirely 10-dimensional terms) by

performing first the boost and scaling, then a T-duality along R̂1 to IIB with N fundamental

string winding modes, and then an S-duality to IIB with N D1-branes. In this way one

arrives at the same description of the DLCQ of IIA string theory. This equivalence is of

course well known in principle, and we emphasise it here only because in [8] the scaling

was only performed after the TS-duality, and even then only somewhat implicitly (in the

definition of the Yang-Mills time variable). In general one has to perform the scaling

rightaway, in conjunction with the boost, to obtain equivalence with the first prescription

(which is rooted firmly in the Seiberg-Sen derivation of the BFSS matrix theory).

Following this procedure, one finds that the parameters of the final IIB string theory

are related to the ℓs, gs and R11 = ℓsgs of the original IIA theory by (we will denote IIB

quantities by a prime)

(ℓ′s)
2 = ǫ(ℓs)

2 R11

R
g′s = ǫ

R

R11
, (2.50)
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and that the scaled ST-dual metric-dilaton background is given by

(ds′)2 =
√

g11e
−φ

(
−2dx̂+dx̂− +

ℓ4
s

R2g11
(dx̂1)2 + . . .

)
≡ eφ′

ds̃2

φ′ = −φ +
1

2
log g11 ,

(2.51)

where φ and g11 are functions of x̂+ = x̃+ = y+ (the original lightcone coordinate) and ds̃2

is the T-dual of the original scaled IIA metric. Note that this is again a plane wave metric,

written in the almost-Rosen coordinates (A.2). It is neither necessary nor convenient to

introduce a true Rosen +-coordinate at this stage since the prefactor of the above metric

will in any case drop out of the DBI action to be discussed below. We have normalised x̂1

to have unit radius, x̂1 ∼ x̂1 +2π. Note that it is due to the fact that we have implemented

the boost by isometries of the metric, and that we have already performed the scaling, that

neither the metric nor the dilaton has any (undesirable) explicit ǫ-dependence.

The next step is to look at the Abelian (N = 1) D1-brane DBI action in the back-

ground (2.51),

S = − 1

2πg′sℓ
′ 2
s

∫
dτdσ e−φ′

√
− det(∂αx̂µ∂β x̂νg′µν + 2πℓ′ 2

s Fαβ) , (2.52)

and to expand the fields to quadratic order around a suitable classical solution of this

action. First of all we observe that

g′sℓ
′ 2
s = (ǫℓs)

2, (2.53)

the scaled original string length squared, and that, correspondingly, the dilaton in the DBI

action reconverts the ST-dual metric to the T-dual metric ds̃2 implicitly defined in (2.51).

We now seek a solution x̂µ
c of the DBI equations of motion that describes the groundstate

of a simply wrapped D1-string around the x̂1-direction. Thus we make the lightcone gauge

ansatz

x̂+
c = aτ , x̂1

c = bσ , x̂m
c = 0 , (Aα)c = 0 . (2.54)

The solution for x̂−
c can then be found by integrating the lightcone gauge constraint equa-

tions ∂σx̂−
c = 0 and ∂τ x̂

−
c = b2g̃11/2a. Compatibility of the classical solution with the

periodicity of x̂1 and the choice σ ∼ σ+2πℓs fixes b = 1/ℓs, and we may as well also choose

a = 1. Choosing now the gauge x̂+ = x̂+
c , x̂1 = x̂1

c , the fluctuations are the gauge fields

and the fields (X1,Xm) defined (with a convenient normalisation) by

x̂−(τ, σ) = x̂−
c (τ) + ǫ

ℓs

R
X1(τ, σ) , x̂m(τ, σ) = ǫXm(τ, σ) . (2.55)

The fluctuation expansion then becomes an ǫ-expansion (compatible with the ǫ−2-prefactor

arising from (2.53)), and to quadratic order in the fluctuations one finds, after an unen-

lightning but straightforward calculation, dropping the field-independent classical action

and a total derivative term, the action

S =
1

2πℓ2
s

∫
dτdσ

[
1

2
gij(τ)(∂τ Xi∂τXj − ∂σXi∂σXj) + 2π2ℓ4

sg
2
se

2φ(τ)F 2
τσ

]
. (2.56)
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The final result is extremely simple. All that enters, after this sequence of manipulations,

are the transverse metric components and the dilaton of the original IIA configuration,

not its T-dualised or S-dualised cousins. In particular, the coupling constant of the gauge

theory is set by the original dilaton,

gYM ∼ 1

gsℓs
e−φ . (2.57)

Moreover, in complete generality the field X1, which began life as a fluctuation of x̂−,

in the end plays the role of x1 (which itself had been gauge fixed). The ǫ-scaling of the

fluctuations in (2.55) is also natural from this point of view, since it undoes the Penrose

scaling (2.47) of the transverse coordinates x̃i, so that the fluctuations are directly related

to the coordinates of the original metric (just as the choice a = 1 identifies the worldsheet

time coordinate with the original lightcone time coordinate).

It remains to discuss the validity of the truncation of IIB string theory in the sector

with 1 D-brane (N = 1) to the above action. To that end, recall first that we had already

established in section 2.3 that at the level of gauge fixed fluctuations (the situation we are

dealing with here), the energies δÊ of the above fluctuation action are finite and equal to

the string theory lightcone energy fluctuations. Thus in order to establish the decoupling

of massive open strings and bulk closed string modes, we need to compare their energies

with the YM energies in the limit ǫ → 0.

In principle, following [8], this could be accomplished by defining a suitable effective

string or Planck length (incorporating the effect of the non-trivial IIB dilaton). However,

this is unnecessary since the metric and dilaton of the final IIB theory are in any case

independent of ǫ and thus have no bearing on the issue of decoupling in the DLCQ limit

ǫ → 0.3 The ǫ-dependence resides only in the IIB string length and string coupling (2.50),

both of which go to zero as ǫ → 0. It follows that

lim
ǫ→0

(δÊ)ℓ′s = lim
ǫ→0

(δÊ)(g′s)
1/4ℓ′s = 0 , (2.58)

which establishes the decoupling of massive open and closed string modes.

3. Some basic properties of the matrix string action for SHPWs

3.1 The plane wave matrix string action in Rosen coordinates

It is now reasonable to assume that, in the absence of background fields other than the

metric and the dilaton, the non-Abelian version of the above action, i.e. the decoupled

action arising from the sector of IIB string theory with N would D1-strings, is given by

the obvious non-abelianisation of the above action.4 Thus, more or less following the usual

matrix string theory conventions (numerical factors can be changed by various scalings of

3In this respect, our analysis differs from that of [8] and, in particular, subsequent articles that claimed

to find a much more complicated ǫ-dependence arising from the metric and dilaton.
4The presence of other background fields would complicate matters due to the appearance of Myers

terms etc.
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the fields and coordinates) and with the insight that the Yang-Mills coupling constant in

this model is set by the dilaton via (2.57), the bosonic part of the matrix string action is

(the Xi = Xi(τ, σ) now denote hermitian matrix valued fields)

S =
1

2πℓ2
s

∫
dτdσ Tr

{
1

2
gij(τ)(Dτ XiDτXj − DσXiDσXj) + 2π2ℓ4

sg
2
se

2φ(τ)F 2
τσ (3.1)

+
1

16π2ℓ4
sg

2
s

e−2φ(τ)gik(τ)gjl(τ)[Xi,Xj ][Xk,X l]

}
.

In terms of the flat worldsheet metric ηαβ this can be written as

S =
1

2πℓ2
s

∫
d2σ Tr

{
−1

2
ηαβgij(τ)DαXiDβXj − 1

4
4π2ℓ4

sg
2
se

2φ(τ)ηαγηβδFαβFγδ (3.2)

+
1

4

1

4π2ℓ4
sg

2
s

e−2φ(τ)gik(τ)gjl(τ)[Xi,Xj ][Xk,X l]

}
.

This is the matrix string action for a plane wave in Rosen coordinates, a convenient coor-

dinate system to start off with since the isometry directions required for the reductions,

T-duality etc., were manifest. However, for many purposes Brinkmann coordinates are

more convenient, and we will discuss the Brinkmann version of this action below, since it

also has several advantages over the Rosen coordinate action.

At this point it is appropriate to say a few words about the fermionic part of these

actions. Apart from the standard kinetic term and Yukawa couplings one may ask if

there are any other additional terms arising from the non-trivial target-space metric. Such

additional terms arise from the spin connection contribution to the covariant derivative

and have been discussed for D-brane actions for instance in [42]. They are typically of the

form

Ψ̄Γαω MN
α ΓMNΨ (3.3)

where α are world-volume indices, the Ψ are Majorana spinors and the Γ real 32 × 32

gamma matrices (perhaps with a projection on the spinors, depending on the target space

string theory).

In order to calculate the spin-connection for a plane wave metric in Rosen coordi-

nates, we introduce the orthonormal frame E± = dy±, Ea = Ea
i dyi with Ea

i a vielbein for

gij(y
+). The calculation becomes particularly simple when one chooses the special (par-

allel) frame that also happens to enter in the transformation from Rosen to Brinkmann

coordinates (A.8) and which satisfies the symmetry condition (A.9). Then one finds that

the only non-vanishing components of the spin connection are

ω−a = Ėa
i dxi . (3.4)

In particular, these have no components in the worldsheet directions that could contribute

to (3.3). Although we have used the special symmetric frame to do this calculation, the

term that we are considering (plus the suppressed fermion kinetic term) is covariant under

frame rotations, and the result is thus independent of the choice of frame.

– 15 –



J
H
E
P
0
9
(
2
0
0
8
)
0
9
7

In principle, there are also dilatonic contributions to the D-brane action [42] which, in

the absence of RR fields, take the simple form

Ψ̄Γα∂αφΨ . (3.5)

For Majorana fermions, with Ψ̄ = ΨT Γ0 in a Majorana basis, say, this term is also zero

since Γ0Γα is symmetric.5 Thus in our case there are no additional fermionic contributions

to the D-string action arising from either the space-time metric or the dilaton.

Since the bosonic part of the matrix string action (3.2) can be regarded as the di-

mensional reduction of the 10d Yang-Mills action in the Rosen coordinate plane wave

background to 1+1 dimensions (along the transverse translational isometries of the plane

wave), one might perhaps have expected the presence of other terms of the same form

as (3.3) but with a contraction over transverse space-time indices i rather than the world-

volume indices α in the fermionic part of the matrix string action. While the analysis of [42]

suggests that such terms should not appear in the action, they in any case also turn out

to be identically zero for plane waves. Namely, using (3.4) and once again the symmetry

condition (A.9), one finds that the only possible further contribution to the action is

Ψ̄EI
AĖA

I Γ+Ψ . (3.6)

This term, however, is zero for anti-commuting Majorana fermions, for the same reasons

as above.

We close this section with one remark regarding the generality of the above action.

Strictly speaking, we have derived this action only for singular homogeneous plane waves

since in that case we could implement almost literally the accepted flat space Seiberg-Sen

DLCQ prescription (in its CSV variant). However, as it stands, this action makes sense

for any plane wave metric - dilaton system. If one can argue that, in order to correctly

implement the DLCQ in curved backgrounds, one only needs to consider the combined

boost-scaling Penrose transformation (2.47), as e.g. the arguments in [39] suggest, then

the entire derivation of the matrix string action, including the decoupling arguments, still

goes through, and one would then have established the validity of the above matrix string

action for any plane wave.

3.2 Rosen vs Brinkmann form of the matrix string action

Here we discuss the Brinkmann coordinate (BC) counterpart of the Rosen coordinate (RC)

matrix Yang-Mills action (3.2), which we now write in slightly simplified form as

SRC =

∫
d2σ Tr

(
−1

4
g−2
YMηαγηβδFαβFγδ −

1

2
ηαβgij(τ)DαXiDβXj

+
1

4
g2
YMgik(τ)gjl(τ)[Xi,Xj ][Xk,X l]

)
. (3.7)

5The presence of RR fields would have contributed additional projectors to (3.5), which could then have

given rise to potentially non-zero contributions of the dilaton gradient to the D-brane action.
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Now in Brinkmann coordinates a plane wave takes the form (A.6),

−2dx+dx− + gij(x
+)dxidxj = −2dz+dz− + Aab(z

+)zazb(dz+)2 + δabdzadzb (3.8)

and since typically (e.g. in the lightcone gauge point particle or string actions) Aab turns

into a mass term for the fields, as a potential Brinkmann counterpart of this action, we

consider the action

SBC =

∫
d2σ Tr

(
−1

4
g−2
YMηαγηβδFαβFγδ −

1

2
ηαβδabDαZaDβZb

+
1

4
g2
YMδacδbd[Z

a, Zb][Zc, Zd] +
1

2
Aab(τ)ZaZb

)
. (3.9)

On the face of it, these two classes of actions appear to be rather different, with (3.7) having

non-standard time-depenent kinetic terms and quartic couplings for the scalar fields, de-

scribed by the gij(t), while (3.9) has standard kinetic and quartic terms but time-dependent

mass terms for the scalars (with Aab(t) minus the mass-squared matrix). Nevertheless, we

claim that these two types of Yang-Mills actions are simply related by a certain linear field

redefinition Xi = Ei
a(τ)Za of the scalar fields,

SRC[Aα,Xi = Ei
aZ

a] = SBC[Aα, Za] . (3.10)

To see this, recall first of all the coordinate transformation (A.8) between Rosen and

Brinkmann coordinates, in particular the part xi = Ei
az

a. We are thus led to consider the

linear field transformation

Xi(τ, σ) = Ei
a(τ)Za(τ, σ) (3.11)

of the scalar fields (matrix-valued coordinates) Xi and Za, where Ei
a is a vielbein for

the time-dependent metric gij(τ) on the scalar field space satisfying the symmetry condi-

tion (A.9). Substituting (3.11) into the RC Lagrangian LRC, one can now verify that one

indeed obtains the BC Lagrangian LBC up to a total time-derivative (related to the shift

of x− in (A.8)). We explain this calculation in somewhat more detail in [29], where we also

show that this kind of argument extends to the plane wave counterparts of the recently

proposed multiple M2-brane actions [30 – 32] based on 3-algebras rather than Lie algebras.

Here we just want to point out that a crucial role in this calculation is played by the sym-

metry condition (A.9) (and, of course, by the gauge invariance of the action). Not only

is this condition responsible for several cancellations that are akin to those that already

occur in the transformation of a plane wave metric from Rosen to Brinkmann coordinates.

It cooperatively also serves to eliminate some terms of genuinely non-Abelian origin, such

as

gij(t)E
i
aĖ

j
b Tr[At, Z

a]Zb = gij(t)E
i
aĖ

j
b Tr At[Z

a, Zb] = 0 (3.12)

arising from the scalar kinetic terms. The above equivalence (3.10) is also valid for a

time-dependent coupling constant gYM(τ), since the total time-derivative arises only from

the dilaton-independent scalar kinetic term. It also extends to the fermionic terms in the

action in a rather trivial way, since the (Yukawa) coupling between the fermions and the

scalars Xi is purely algebraic.
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The main advantage of the Brinkmann form (3.9) of the action is that the scalar fields

have standard kinetic terms. This implies that it is legitimate and meaningful to look at

the potential terms to deduce some properties of the classical and quantum theories. In

particular, whether one is in an Abelian or non-Abelian phase of the theory can be reliably

read off from the behaviour of the dilaton. For example, when the dilaton blows up at the

singularity (a strong coupling singularity in the sense of the analysis in appendix B.3), the

Yang-Mills coupling constant (2.57) is small and one is in a genuinely non-Abelian phase of

the theory, just as in the CSV model, where the matrix coordinates are non-commutative.

By contrast, conclusions based solely on the analysis of the quartic potential term in the

RC action (3.7), or the attempt to read off something like an effective string tension from

the RC kinetic term, are bound to be misleading at best.

Furthermore, the mass terms in the BC action contain direct invariant geometric infor-

mation about the space-time, since they arise from the components of the Riemann tensor

in Brinkmann coordinates. In particular, we will see below that they faithfully encode the

information whether one is dealing with a strong or weak coupling singularity (in the sense

of the analysis in appendix B.3), something that is not at all manifest in the RC action

which also exhibits spurious coordinate singularities.

3.3 Absorbing the coupling constant into the worldsheet metric

It is obvious, and a basic property of 2-dimensional gauge theories, that the dilaton / Yang-

Mills coupling constant can, in either the Rosen or the Brinkmann form of the Yang-Mills

action, in principle always be absorbed into a non-trivial worldsheet metric via

hαβ = e−2φηαβ , (3.13)

since one then has
√

h = e−2φ √
hhαβ = ηαβ

√
hhαγhβδ = e2φηαγηβδ , (3.14)

which are precisely the pre-factors of the quartic, scalar kinetic and F 2 terms respectively.

Once one has absorbed the dilaton into the worldsheet metric (in view of the considerations

below it is not clear if one really wants to do this in general), the only time-dependence

remaining in the Brinkmann coordinate matrix string action is in the mass terms Aab(τ).

The Rosen coordinate matrix string theory action, on the other hand, still has explicit time-

dependence arising from the metric coefficients gij(τ). Such a remaining time-dependence

can never be absorbed by a further (conformal) redefinition of the worldsheet metric since

the combination
√

hhαβ is conformally invariant so that the time-dependence in the kinetic

term gijDXiDXj can not be eliminated in this way.

In the CSV model (flat metric with a linear dilaton), (3.13) resulted in a useful alter-

native description of the theory, heavily made use of e.g. in [9]. Instead of a Yang-Mills

theory with a time-dependent coupling constant on a cylindrical worldsheet with the triv-

ial metric one then has a Yang-Mills theory with a time-independent coupling constant on

a cylindrical worldsheet with a non-trivial time-dependent metric. With φ = −Qτ , the

line-element is

ds2 = e2Qτ (−dτ2 + dσ2) . (3.15)
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While this metric is locally flat, the periodicity of σ results in the worldsheet being the

Milne orbifold [8].

For the backgrounds with b 6= −1, on the other hand, we have exp 2φ(τ) = τ3b/(b+1).

Thus the rescaled worldsheet metric has the form

ds2 = τ2γ(−dτ2 + dσ2) (3.16)

where 2γ = −3b/(b + 1). The Einstein-dilaton equations imply that γ ≥ −1 (B.14). Now

this metric is singular even prior to the periodic identification of σ unless either, trivially

γ = 0 (i.e. b = 0, a constant dilaton), or γ = −1. Indeed, when γ 6= −1, the metric

has a curvature singularity at τ = 0, as can be seen by calculating e.g. the Ricci scalar

R = −2γτ−(2γ+2). For γ = −1, on the other hand, R is constant and with T = log τ one

has

ds2 = τ−2(−dτ2 + dσ2) = −dT 2 + e−2T dσ2 . (3.17)

This is just the (1+1)-dimensional de Sitter (dS) metric, written in coordinates that cover

half of the entire dS space-time. γ = −1 corresponds to 3b/(b + 1) = 2, i.e. b = 2. This is

the dual background (under the b → 1 − b isometry) of the CSV solution (see the remark

after (B.18)), and thus the dS worldsheet arises in the dual reduction of the CSV M-theory

background (B.3).

Periodicity of σ means that we are considering here dS space-time with toroidal (rather:

circular) spatial sections. While on the face of it this appears to be an innocuous modifica-

tion of the dS metric, this space-time is, in spite of apparently being non-singular, actually

known to be timelike geodesically incomplete [43, 44] (i.e. it contains inextendible timelike

geodesics of finite length). Note that this worldsheet geodesic incompleteness appears at

T → −∞, i.e. at the location of the space-time singularity. Nevertheless, this worldsheet

structure may be more tractable than the (genuinely singular) worldsheets that arise for

γ 6= −1. In particular, here the point of incompleteness is “inaccessible” in the sense that

an observer who wants to reach it in finite proper time needs to wrap around the circle an

infinite number of times.

3.4 Tachyons and strong string coupling singularities

Let us take a closer look at the scalar sector of the BC action (3.9). The information about

the metric resides solely in the mass matrix

µ2
ab(τ) = −Aab(τ) . (3.18)

For the singular homogeneous plane wave backgrounds of appendix B one has (B.9)

µ2
ab(τ) = µ2

a(τ)δab = −ma(ma − 1)τ−2δab . (3.19)

Now by the Einstein-dilaton equation (B.13),

∑

a

ma(ma − 1) = − 3b

b + 1
, (3.20)
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the parameters ma are related to the parameter b determining the dilaton φ. The sign

of b in turn determines (appendix B.3) whether exp φ blows up at the singularity (strong

coupling singularity, b < 0) or goes to zero there (weak coupling singularity, b > 0). In

particular, if all the mass-squares µ2
a of the scalars are positive, necessarily b is positive,

and one is dealing with a weak coupling singularity. Conversely, therefore, whenever one

is dealing with a strong coupling singularity, at least one of the scalars is tachyonic (and

the sum over all the µ2
a is negative). Thus this is the way a strong coupling singularity

manifests itself in the BC matrix string action.

The derivation of the model, in particular the decoupling analysis of section 2.4, sug-

gests that the matrix string action gives a valid description of the string theory at least for

all τ > 0 and even when τ → 0. Thus the presence of these tachyonic mass terms, which

can in principle occur both for strong and for weak coupling singularities, should not all

by itself be indicative of a pathology of the model.6 In particular, in the non-Abelian

phase of the theory the tachyonic mass terms can potentially be stabilised by the quartic

potential, perhaps indicating the existence of some new and interesting non-perturbative

physics. One might e.g. like to see if there is a qualitatively different behaviour for strong

(
∑

a µ2
a < 0) vs weak (

∑
a µ2

a > 0) coupling singularities. It may also be of interest to

study the implications of the classical scale invariance of these models, manifested e.g. in

the characteristic τ−2-dependence of the mass terms, in the quantum theory.
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A. Plane wave geometry: synopsis

There are two standard coordinate systems for plane wave metrics, each with its own

advantages. In Rosen coordinates, the metric takes the form

ds2 = gµνdyµdyν = −2dy+dy− + gij(y
+)dyidyj . (A.1)

In Rosen coordinates it is manifest that any metric conformal to a plane wave metric, with

the conformal factor depending only on y+,

ds2 = f(y+)(−2dy+dy− + gij(y
+)dyidyj) , (A.2)

or, equivalently, a metric of the type

ds2 = −2f(y+)dy+dy− + gij(y
+)dyidyj , (A.3)

6In this context it may be worth pointing out that in a related setting, namely the modelling of cos-

mological singularities via AdS/CFT, it was also found to be necessary to introduce a potential that is

unbounded from below [45]. More recently, tachyonic mass terms of the above τ
−2-type have also been

shown to arise naturally in the cosmological AdS/CFT context [46].
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is again a plane wave metric, as can be sen by defining the new Rosen coordinate (affine

parameter) ỹ+ by dỹ+ = f(y+)dy+.

The metric (A.1) has the manifest commuting translational Killing vectors Z = ∂y−

and Q(i) = ∂yi . In addition, any plane wave metric has the “hidden” dual commuting

translational Killing vectors

P (i) = yi∂y− + hik∂yk , (A.4)

where

hik(y+) =

∫ y+

du gik(u) , (A.5)

which extend the Abelian isometry algebra generated by Q(i) and Z to the Heisenberg

algebra [Q(i), P
(k)] = δ k

i Z with central element Z.

Rosen coordinates are not the coordinate system in which plane waves are usually and

most conveniently discussed, among other reasons because typically in Rosen coordinates

the metric exhibits spurious coordinate singularities. The plane wave metric in Brinkmann

coordinates is

ds2 = gµνdzµdzν = −2dz+dz− + Aab(z
+)zazb(dz+)2 + δabdzadzb . (A.6)

Brinkmann coordinates are Fermi coordinates adapted to the null geodesic (z+ = τ, z− =

0, za = 0) [27]. In particular, Brinkmann coordinates are, like Riemann coordinates, a

direct measure of the invariantly defined geodesic distance in space-time.

Moreover, and related to this, in Brinkmann coordinates, the curvature of the plane

wave is related purely algebraically to the mass/frequency term Aab(u) of the metric, which

trivialises the task of calculating the curvature of a plane wave. Specifically, the only non-

vanishing components of the Riemann tensor and Ricci tensor are

R+a+b(z
+) = −Aab(z

+) R++(z+) = −δabAab(z
+) , (A.7)

and the Ricci scalar is zero. Thus the metric is flat iff Aab = 0 and the vacuum Einstein

equations reduce to the simple algebraic condition on Aab (regardless of its z+-dependence)

that it be traceless. The number of degrees of freedom of this traceless matrix Aab(z
+) are

those of a transverse traceless symmetric tensor (a.k.a. a graviton).

The two classes of metrics described by (A.1) and (A.6) are equivalent: every metric

of the form (A.1) can be brought to the form (A.6), and conversely every metric of the

type (A.6) can be written, in more than one way, as in (A.1). The coordinate transformation

relating (A.1) and (A.6) is

(y+, y−, yi) =

(
z+, z− − 1

2
ĖaiE

i
bz

azb, Ei
az

a

)
, (A.8)

where Ei
a = Ei

a(y
+) is a vielbein for gij(y

+), Ei
aE

j
bgij = δab, subject to the symmetry

condition

ĖaiE
i
b = ĖbiE

i
a (A.9)
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(which can be interpreted [23, 24] as the condition that the frame Ei
a is parallel transported

along the congruence of null geodesics defined by the Rosen coordinates). The relation

between gij(y
+) and Aab(z

+) can be succinctly written as [22] (recall that z+ = y+)

Aab(z
+) = Ëai(z

+)Ei
b(z

+) . (A.10)

The above relations simplify considerably for diagonal metrics, gij(y
+) = gi(y

+)2δij , for

which one simply has

Aab(z
+) =

g̈a(z
+)

ga(z+)
δab . (A.11)

In particular, for Rosen coordinate metrics of power-law type,

ds2 = −2dy+dy− +
∑

i

(y+)2mi(dyi)2 , (A.12)

the metric in Brinkmann coordinates is

ds2 = −2dz+dz− +
∑

a

ma(ma − 1)

(z+)2
(za)2(dz+)2 +

∑

a

(dza)2 , (A.13)

and its Ricci tensor is

R++(z+) = −
∑

a

ma(ma − 1)(z+)−2 . (A.14)

Since ma(ma − 1) is invariant under ma → 1 − ma, (A.13) shows that Rosen coordinate

metrics with mi and mi → 1−mi are isometric. In particular, any metric with all mi = 0, 1

is flat.

It is evident e.g. from (A.14) that these plane waves are singular at z+ = 0 and, since

z+ can play the role of an affine geodesic parameter, that this singularity is at finite affine

distance, so that these metrics are geodesically incomplete. Moreover, these power-law

metrics and their Brinkmann coordinate counterparts have the special property that they

are scale-invariant, i.e. invariant under scalings of the coordinate (affine parameter) y+ or

z+. This is evident for (A.13), which is invariant under

(z+, z−) → (λz+, λ−1z−) . (A.15)

Thus these metrics have the additional Killing vector X = z+∂z+ − z−∂z− . The corre-

sponding isometry in Rosen coordinates (A.12) is

(y+, y−, yi) → (λy+, λ−1y−, λ−miyi) . (A.16)

See [21] and [22] for a systematic discussion and other properties of these singular homo-

geneous plane waves.
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B. A class of plane wave — Null dilaton Big Bang backgrounds

B.1 M→IIA reduction of singular homogeneous plane wave backgrounds

Using the standard relation

ds2
11 = e−2φ/3ds2

st + e4φ/3dy2 (B.1)

between M-theory and IIA string frame backgrounds, one sees that the CSV [8] configura-

tion

ds2
st = −2dy+dy− + δijdyidyj e2φ = e−3y+

, (B.2)

Minkowski space with a linear dilaton, lifts to the M-theory plane wave metric

ds2
11 = −2dudv + uδijdyidyj + u−2(dy)2 , (B.3)

where y+ = log u (and y− = v). We will now turn this around and consider the reduction

of more general 11d plane wave metrics (in Rosen coordinates)

ds2
11 = −2dudv + Gij(u)dyidyj + c(u)dy2 (B.4)

along y. Then one obtains the IIA string frame metric + null dilaton configuration

ds2
st = c1/2(u)(−2dudv + Gij(u)dyidyj)

e2φ(u) = c(u)3/2 .
(B.5)

The ten-dimensional string and Einstein frame metrics are also plane waves. In the string

frame, the standard Rosen form is obtained by introducing the null coordinate (affine

parameter) y+,

dy+ = c1/2(u)du , (B.6)

in terms of which (and y− = v) the metric takes the standard Rosen form (A.1) with

gij(y
+) = (c1/2Gij)(u(y+)). The Einstein frame metric ds2

e = exp (−φ/2)ds2
st is also mani-

festly a plane wave, written in the almost-Rosen form (A.2).

Let us now concentrate on the 11d singular homogeneous plane waves of the power-law

form

ds2
11 = −2dudv +

∑

i

u2ni(dyi)2 + u2b(dy)2

= −2dz+dz− +
∑

a

na(na − 1)

(z+)2
(za)2(dz+)2 +

b(b − 1)

(z+)2
z2(dz+)2 +

∑

a

(dza)2 + (dz)2

(B.7)

The relation dy+ = ubdu (B.6) integrates to y+ = ub+1/(b+1) for b 6= −1 and to y+ = log u

for b = −1. Thus the dilaton behaves as

e2φ(u) = u3b =

{
[(b + 1)y+]3b/(b+1) b 6= −1

e3by+
= e−3y+

b = −1
(B.8)
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While in general one obviously always finds a null dilaton in 10 dimensions, a linear dilaton,

as in the CSV model (B.2), arises only for the special value b = −1 of the parameter b.

By a suitable scaling of the coordinates, one can put the b 6= −1 IIA backgrounds into the

normalised form (A.12), (A.13)

ds2
st = −2dy+dy− +

∑

i

(y+)2mi(dyi)2

= −2dz+dz− +
∑

a

ma(ma − 1)

(z+)2
(za)2(dz+)2 +

∑

a

(dza)2

e2φ = (y+)3b/(b+1) ,

(B.9)

with

2mi =
2ni + b

b + 1
. (B.10)

For b = −1, on the other hand, one has

ds2
st = −2dy+dy− +

∑

i

e(2ni−1)y+

(dyi)2

= −2dz+dz− +
∑

a

(2na − 1)2(za)2(dz+)2 +
∑

a

(dza)2
(B.11)

with a linear dilaton. This has the standard form of a metric of a non-singular symmetric

plane wave (constant Aab).

B.2 Equations of motion

The 11d vacuum Einstein equations for the singular homogeneous plane wave (B.7) reduce

to the algebraic condition

∑

a

na(na − 1) + b(b − 1) = 0 . (B.12)

In terms of the IIA parameters mi (B.10) for b 6= −1, this equation can be written as

∑

i

mi(mi − 1) = − 3b

b + 1
, (B.13)

which implies
3b

b + 1
≤ 2 . (B.14)

The algebraic constraint (B.13) can be recognised as the Einstein-dilaton equation

R++(z+) = −2∂+∂+φ(z+) (B.15)

for the dilaton

φ(z+) =
3b

2(b + 1)
log z+ . (B.16)
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Since all terms in (B.12) are positive when the parameters are sufficiently large (positive

or negative), this strongly constrains their allowed range. A useful way of writing this

equation is

(b − 2)(b + 1) = −
∑

a

(na − 1/2)2 . (B.17)

Since the right hand side is non-positive, this leads to the constraint

−1 ≤ b ≤ 2 . (B.18)

Thus the linear dilaton case b = −1 lies at the boundary of the allowed parameter range,

and the only solution with b = −1 is the (lifted) CSV solution (B.3) with na = 1/2. The

solution with b = 2 is, in a sense dual to the CSV background (the 11d metrics with b = −1

and b = 2 are isometric, but the reduction to 10d is performed either along ∂y or along the

dual isometry direction).

B.3 Singularity structure and behaviour of the dilaton at the singularity

We now want to analyse the behaviour of the dilaton at the singularity of the plane wave

metrics for b 6= −1, and begin with a brief review of the situation for the b = −1 CSV

background. As a symmetric plane wave, the b = −1 metric (B.11) is completely non-

singular. It is isometric to the flat metric iff 2na − 1 = 0. This is precisely the CSV

background (B.2), (B.3), and the only solution to the vacuum Einstein equations for b = −1.

Even though the string frame metric is flat, the IIA background as a whole should be

considered to be singular [8], either because of the dilaton ∼ exp−3y+, which is singular

as y+ → −∞, or because of the behaviour of the metric in the Einstein frame. This is

compatible with the fact that the M-theory lift (B.3) of the CSV background is itself a

singular homogeneous plane wave with a singularity at u = 0 (y+ = log u). Thus the

singularity arises at strong string coupling and therefore, in the matrix string setting, at

weak gauge coupling. Far from the singularity, on the other hand, the string coupling

goes to zero. Since y+ can be identified with the relevant affine geodesic parameter, the

singularity is located at infinite geodesic distance in the string frame metric. This is

in contrast to what happens for the 11-dimensional lift of the CSV metric (B.3) (the

singularity occurs at the finite value u = 0 of the affine parameter u) or in the Einstein

frame.

The b 6= −1 metrics (B.9) have a singularity at y+ = 0 unless the metric is isometric

to the flat metric, which is the case iff ma(ma − 1) = 0, i.e. ma = 0 or ma = 1, requiring

also a constant dilaton b = 0. The relation between the 11-dimensional and 10-dimensional

string frame affine paramters u and y+ is

u ∼ (y+)1/(b+1) (B.19)

and the dilaton is

e2φ ∼ (y+)3b/(b+1) . (B.20)

Thus for b+1 > 0 (B.18), a condition implied by the Einstein equations, u → 0 corresponds

to y+ → 0, and thus the singularity is always at finite geodesic distance, even in the string

frame, in contrast to what happens in the CSV background.
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Since b + 1 > 0, it is evident that the behaviour of the dilaton at the singularity is

determined by the sign of b,

strong coupling singularity: − 1 < b < 0

weak coupling singularity: 0 < b ≤ 2 .
(B.21)

Finally, note that in the strongly coupled range the string coupling goes to zero at infinity,

i.e. as z+ → ∞, just as in the CSV model. In the weakly coupled range, on the other hand,

the string coupling would blow up there. This can be remedied by noting [21] that the

general solution of the IIA Einstein-dilaton equations (B.15), also includes a linear term in

the dilaton solution (B.16),

φ(z+) =
3b

2(b + 1)
log z+ − cz+ . (B.22)

For c > 0 and b > 0 this has the effect that the string coupling now tends to zero both at the

singularity z+ = 0 and for z+ → ∞. This is the case analysed from a string theory point of

view in [21]. Since the metric-dilaton background for c 6= 0 does not arise from (or lift to)

a singular homogeneous plane wave in 11 dimensions, and since, in the spirit of [23, 24],

we regard the singular homogeneous plane wave metrics not as genuine comsological toy-

models but as a near-singularity approximation of a singular space-time (in particular, we

do not trust / take seriously the metric as z+ → ∞), we will only consider the solutions

with c = 0.
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